Stellar distributions around BHs in rotating dense stellar systems

J. Fiestas (ISAAC-LBNL, NAOC) China-Korea Workshop 2013

Overview:

• *How rotation modifies dynamics? Rotation in globular clusters and galaxy cores*

• *Models, and simulations with BHs*

• *Recent results of 2-mass component models*

Dynamics around BHs – rotating systems How internal rotation modifies dynamics:

Interview of the second sec

Iong term dynamical evolution (angular momentum transfer)

Segradients in kinematical profiles (differential rotation)

	$v_{ m rot}^{ m max}/\sigma$	e	$T_{\rm rot}/W$
NGC104 (47Tuc)	0.26	0.09	0.025
NGC362	0.01	0.01	0.003
NGC3201	0.28	0.12	0.03
NGC5139 (ω Cen)	0.41	0.17	0.05
NGC5272 (M3)	0.12	0.04	0.01
NGC6205 (M13)	0.25	0.11	0.03
NGC6341 (M92)	0.3	0.10	0.03
NGC6397	0.11	0.07	0.02
NGC6656 (M22)	0.5	0.14	0.04
NGC7078 (M15)	0.15	0.05	0.013
NGC7089 (M2)	0.34	0.11	0.03
NGC7099 (M30)	0.12	0.01	0.003

Time scale of relaxation:

$t_{\rm r} \approx 0.065 \ \sigma^3 / (G^2 m_\star \rho \ln \Lambda)$

E4 M49 (AURA, NSF, NOAO)

Collisionless systems:

relax. times exceed Hubble time e: 0.0 - 0.7Ellipticity supported by vel.disp and rotation

Collisional system: relax. times much smaller than Hubble time e: 0.0 - 0.2Flattened systems become sphericall as they relax (Shapiro & Marchant 1976 Fall & Frenk 1984, White & Shawl 1987)

FIG. 3.—The quantity $V_{\rm m}/\bar{\sigma}$ against ellipticity. Ellipticals with $M_B^{\rm UH} > -20.5$ are shown as filled circles; ellipticals with $M_B^{\rm UH} < -20.5$, as open circles; and the bulges of disk galaxies, as crosses. The solid line shows the $(V/\sigma, \epsilon)$ -relation for oblate galaxies with isotropic velocity dispersions (Binney 1978).

• MW Globular clusters

See also Lutzgendorf et al (2013) for m-sigma relation

47 Tuc (ESO/Danish 1.54-m/W.Keel)

GC fitting using Fokker-Planck models:

Figure 9. Same as Fig. 7 for a model of ω Cen. $W_0 = 6$, $\omega_0 = 0.5$ and $t/t_{\rm rh} = 1.6$

Estimate of the mean azimuthal velocity \overline{v}_{ϕ} in the meridional p centauri, obtained as the solution to the optimization problem res are in arc minutes and contours are labelled in km s⁻¹.

Figure 14. V/σ vs. ellipticity ε for ω Cen, 47 Tuc, and M15. The filled symbols denote the pairs $(V/\sigma, \varepsilon)$, in which the ellipticity values are determined by WS87. The empty symbols, connected by a segment to the associated filled symbols, indicate the pairs $(V/\sigma, \varepsilon)$ corrected for inclination. The dashed line indicates the relation for isotropic oblate rotators viewed "edge-on," whereas the thin dotted lines indicate oblate rotators viewed "edge-on" with different global anisotropy parameters δ (from left to right, $\delta = 0.05$, 0.1, 0.15, and 0.20). See the text for a more complete description.

Bianchini et al (2013)

Fiestas et al (2006)

FIRST BLACK HOLE DISCOVERED IN GLOBULAR **CLUSTER CAUSES ASTRONOMERS TO REVISIT THEORY**

PENNY4NASA

Dynamics around BHs – rotating systems *Are there IMBHs in GCs?*

I00-1000 M_{\odot} , core collapse, dynamical evolution

many will be ejected (3-body encounters, mergers)

In runaway growth of seeds (or partial energy equipartition ?- Trenti & Van der Marel (2013)

Observational evidence ?

 $\begin{array}{ll} M15 \ -> 3.9 \ x \ 10^{3} \ M_sun \ (Gerssen \ et \ al. \ 2002, \ 2003) \ , \\ G1 \ (M31) \ -> 2 \ x \ 10^{4} \ M_sun \ (Gebhardt \ et \ al. \ 2002) \end{array}$

Figure 1. Radio luminosity $L_{\rm R}$ as a function of black hole mass $M_{\rm BH}$. The filled circles represent the 3σ upper limit of $L_{\rm R}$ for each source, where the black hole masses are constrained via dynamical modelings. The dashed line represents the predicted $L_{\rm R}$ as a function of $M_{\rm BH}$ according to Strader et al. (2012). The dot–dashed line and the thick solid line correspond to our new results with $\delta = 0.1$ and 0.001, respectively. The thin solid line and the dotted line represent $L_{\rm R}$ estimated by the $\dot{M} - L_{\rm R}$ relation instead of the fundamental plane relation with and without outflows, respectively.

Relaxed systems reach steady states with density cusps of -1.75 (Bahcall & Wolf, 1976,77)

Our galaxy:

Schödel et al. (2007)

Dynamics of growing SMBHs in galaxy cores

Simulations with BHs

Fokker-Planck approximation (axisymmetric model):

$$\frac{df}{dt} = \frac{1}{p} \left(-\frac{\partial F_E}{\partial E} - \frac{\partial F_{J_z}}{\partial J_z} \right)$$

Direct N-Body models:

- Hermite integration
- Individual/block time steps
- Ahmad-Cohen neighbour scheme
- KS-regularization

$$\mathbf{\ddot{r}}_i = -G\sum_{j\neq i} m_j \frac{\mathbf{r}_i - \mathbf{r}_j}{|\mathbf{r}_i - \mathbf{r}_j|^3}.$$

Stellar accretion:

$$r_{\rm d} \sim r_* (M_{\rm bh}/m_*)^{1/3}$$

Fiestas. (2006)

Evolution of Lagrangian-*Radii*:

Core collapse is prevented, further expansion of outer layers Massive BHs "turn-off" corecollapse, driven by heating from stellar disruption

Collisional evolution due to *rotation* + *BH* accretion

 $W_0 = 3.0$

 $\omega_0 = 0.9$

0.1%

0.5%

1.000

Evolution of BH-mass and disruption rates (axisymmetric models)

Left: Final BH mass independent of initial conditions

Right: Mass loss rates enhanced by core contraction with a maximum at collapse time

Fiestas & Spurzem (2010)

Disruption rates: compact cores

Time averaged disruption rates in Nbody models (black) in comparison to FP models (green). Red line is the analytical solution for Bahcall-Wolf cusp

Disruption rates:

Average loss-rate: M_tot=10^9 M_sun, T_rh= 10^10 yr

 $dM/dt = 3.13 \ x \ 10^{-4} \ M_sun/yr$

e.g. rate of large amplitude X-ray outbursts from active/inactive galaxies: 1.5 x 10^-5 galaxy^-1 yr^-1 (Donley et al.2002)

Table 1. Comparison of disruption rates for power law galaxies (from Wang & Merritt 2004)

Galaxy	$log_{10}(M_{bh}/M_{\star})$	$log_{10}(dN/dt)$ $(yr^{-1})(WM)$	$log_{10}(dN/dt)$ $(yr^{-1})(thiswork)$
NGC221	6.32	-3.78	-3.68
NGC224	6.13	-3.56	-3.87
NGC596	7.96	-4.52	-3.04
NGC1023	8.17	-4.19	-2.83
NGC1172	6.90	-3.24	-3.1
NGC1426	7.50	4.08	-3.5
NGC3599	6.22	-4.15	-3.78

Run Identity	\dot{N}_{\max}	$\dot{N}_{ m max,scaled}$	η_{f}
16KR1c	.0252	.0009	$1.73 \\ 1.74$
16KR3c	.0254	.0009	
16KR4c	.0193	.0009	1.75
16KR5c	.0231	.0011	1.77
16KR6c	.0232	.0011	1.78
32KR1c	.0323	.0015	$1.75 \\ 1.77$
32KR3c	.0358	.0016	
32KR4c	.0358	.0017	$1.75 \\ 1.72 \\ 1.76$
32KR5c	.0359	.0017	
32KR6c	.0358	.0017	
64KR1c	.0535	.0025	$1.71 \\ 1.70$
64KR3c	.0468	.0022	
64KR4c	.0528	.0024	1.74
64KR6c	.0601	.0028	1.79
100KR1c	.0600	.0027	$1.72 \\ 1.74$
100KR3c	.0800	.0037	
100KR4c	.0611	.0028	$1.75 \\ 1.77$
100KR6c	.0850	.0039	
FPKR1	.0008	.0008	1.73
FPKR3	.0011	.0011	1.71
FPKR4	.0011	.0011	1.74
FPKR6	.0017	.0017	1.78

 $r/r_{hm}(0)$

Evolution of rotational velocity profiles

Rotation and dispersion maps in the meridional plane. Useful for observations (Fokker-Planck data)

3

4

5

2

ρ

3

1 50.35

1

0

N

Fiestas (2006)

Recent results of 2-mass component models with a central BH: $N_h/N_{tot}=0.01$, $m_h/m_l=10$ Steady-state Bahcall-Wolf cusp ~ -1.75 reached by heavy stars Ligther stars show lower cusps than expected ~ -1.5 (BW77)

Fiestas et al. (2014), in prep.

Rotational velocity and v_{rot}/σ at t_rh~0.8 Heavy stars segregate and take angular momentum to the center.

Fiestas et al. (2014), in prep.

E-Jz distributions of stars at $t/t_{rh} = 0.0$ ($W_0=0.6$, $\omega_0=0.9$) Initial asymmetric distribution of light and heavy stars.

Fiestas et al. (2014), in prep.

E-Jz distributions of stars at $t/t_{rh} \sim 0.8$ ($W_0=0.6$, $\omega_0=0.9$) Asymmetric distribution shows strong rotation, dominated by heavy stars.

Fiestas et al. (2014), in prep.

Conclusions:

Axisymmetric cores with BHs develop steady-state solutions and central rotation in a time of the order of a relaxation time.

•Light stars in 2-mass models show lower cusps, like the observed in our galaxy, probably as a consequence of relaxation processes

Future work: \rightarrow *faster dynamical evolution!*