

The Link Between Ejected Stars, Hardening and Eccentricity Growth of Super Massive Black Holes in Galactic Nuclei

Long Wang^{1,2}, Rainer Spurzem^{3,4,2}, Peter Berczik^{3,4,5} & M. B. N. Kouwenhoven^{2,1}

Accepted by ApJ (2013 November 17)

- 1. Department of Astronomy, School of Physics, Peking University, Beijing, China
- 2. Kavli Institute for Astronomy and Astrophysics, Peking University, Beijing, China
- 3. National Astronomical Observatories of China, Chinese Academy of Sciences, Beijing, China
- 4. Astronomisches Rechen-Institut, Zentrum fuer Astronomie, University of Heidelberg, Heidelberg, Germany
- 5. Main Astronomical Observatory, National Academy of Sciences of Ukraine, Kyiv, Ukraine

Galaxy Mergers

Halos & Bulges grow during mergers

http://www.astro.virginia.edu/class/ whittle/astr553/Topic02/Lecture_2.html

Three Phases Evolution

- Three Phases (Begelman et al. 1980).
 - Dynamical friction (Merritt 2001; Yu 2002)

$$t_{df} \sim \frac{4 \times 10^{6}}{\log N} \left(\frac{\sigma_{*}}{200 \, km \, / \, s} \right) \left(\frac{r_{*}}{100 \, pc} \right)^{2} \left(\frac{10^{8} \, M_{sun}}{m_{BH}} \right) y_{H}$$

- Three body interactions (Quinlan 1996)
- Gravitational Waves
 Radiation (Peters 1964)

$$a_h \approx G\mu / 4\sigma_*^2 \approx 10^{-3} - 0.1 pc$$

$$t_{merge} \sim \frac{3}{85} \frac{c^5 a^4}{G^3 \mu M_{BH1,2}^2} \left(1 - e^2\right)^{7/2} \sim 10^7 \left(\frac{a}{0.01 pc}\right)^4 \left(\frac{10^8 M_{sun}}{m_{BH1}}\right)^3 \left(1 - e^2\right)^{7/2} \frac{m_{BH1}^2}{m_{BH2} M_{BH1,2}} yr$$

Final Parsec Problem

- Low efficient three body interaction
 - In merger of gas-poor galaxies
 - Spherical stellar environment
- Solution:
 - Axisymmetry(rotation) & triaxiality of galactic nuclei
 - (Yu 2002; Merritt & Poon 2004; Berczik et al. 2006; Preto et al. 2011; Fiestas et al. 2012; Gualandris & Merritt 2012; Khan et al. 2012b, 2013)
 - High initial eccentricity of Massive black hole binary (MBHB)
 - (Aarseth 2003; Berentzen et al. 2008, 2009a; Preto et al. 2009, 2011; Khan et al. 2011; Li et al. 2012)
 - Co-rotating and counter-rotating stars around MBHB (Zier & Biermann 2001, 2002; Iwasawa et al. 2011; Sesana et al.2011; Meiron & Laor 2013)

Ejecting stars in large N-body simulations

- Ejecting stars carry away energy and angular momentum of MBHB during three body interaction phase.
- One million N-body simulation of galactic nuclei with MBHB
 - Phi-GPU code (Berczik et al. 2011) in laohu (NAOC) & Milkyway (Juelich SC)
- Rotating King Model (Einsel et al 1999)

$$f(E,J_z) \sim (e^{\beta E} - 1)e^{-\beta \Omega_0 J_z}$$

 $\omega_0 = \sqrt{9/4\pi G n_c} \Omega_0 \qquad W_0 = -\beta m(\phi - \phi_t)$

Initial conditions

- **X** King parameters: W0 = 0.6 ω 0 = 1.8 / 0.0
- Scaling Free: E = -1/4; G = 1; Mtot = 1
- Initial MBHB: vcirc = 0.7; seperation: 0.6 at the center

Model	0110	0210	0510	1010	2020	4020	4040
M_{BH1}	0.01	0.01	0.01	0.01	0.02	0.04	0.04
M_{BH2}	0.001	0.002	0.005	0.01	0.02	0.02	0.04

7 End time: 150

Example:	M _{BH}	R	т	V
Nbody Unit	0.01	0.6	150	0.7
Astro. Unit	$10^7{M}_\odot$	600 pc	2.25 Gyr	46 km/s

Ejected star selection

Ejected star samples

Model	0110	0210	0510	1010	2020	4020	4040
N _{EJ}	863	3457	10203	16656	40288	57596	83367
N _{EJ} /N _{TOT} (%)	0.086	0.34	1.02	1.67	4.03	5.76	8.34

Results – eccentricity evolution

Results – eccentricity evolution

MBHB angular momentum evolution

 β : Inclination angle between MBHB orbit plane and stellar rotating plane

Angular momentum angle distribution

- Spherical coordinate

 - Two angles denotes directions of Angular momentum
 - ➔ : in plane
 - → : from to
 - Two pairs of for ESs & MBHs

 - オ After ejection

Conclusion

- 0.08% 8% of stars are ejected by MBHBs in 1M N-body simulations with 150 N-body time unit (~2Gyr).
- Eccentricity of MBHB grows in a stochastic way, where positive and negative K occur all the time, but there is an average trend towards higher eccentricity.
- In rotating model:
 - **The angular momentum of ejected stars tend to whether increase or decrease after interaction.**
 - the ejected stars tend to have co/counter-rotating orbit with MBHB or perpendicular orbit to stellar system.
- In non-rotating model
 - The angular momentum of ejected stars tend to be constant after interaction.
 - there is only the trend that ejected stars prefer co-rotating orbit with MBHB.
- MBHBs tend to switch stars with counter-rotating orbits into co-rotating orbits during their interactions.

Star cluster simulations with Nbody6++ & GPU

Long Wang^{1,2}, Rainer Spurzem^{3,4,2}, Sverre Aarseth⁵, Peter Berczik^{3,4,6} and M.B.N. Kouwenhoven^{2,1}

- 1. Department of Astronomy, School of Physics, Peking University, Beijing, China
- 2. Kavli Institute for Astronomy and Astrophysics, Peking University, Beijing, China
- 3. National Astronomical Observatories of China, Chinese Academy of Sciences, Beijing, China
- 4. Astronomisches Rechen-Institut, Zentrum fü[°]r Astronomie, University of Heidelberg, Heidelberg, Germany
- 5. Institute of Astronomy, University of Cambridge, Cambridge, UK
- 6. Main Astronomical Observatory, National Academy of Sciences of Ukraine, Kyiv, Ukraine

Star cluster dynamics

Observations (Simon F. 2010)

Cluster	Age	Μ	R _{vir}	ρ _c	Z	Location	t _{dyn}	t _{rh}
Unit	Gyr	M₀	рс	M _☉ /pc ³	Z_{\odot}		Myr	Myr
OC	≤ 0.3	≤ 10 ³	1	≤ 10 ³	~ 1	disk	~1	≤ 100
GC	≥ 10	≥ 10 ⁵	10	≥ 10 ³	< 1	halo	≥1	≥ 1000
YMC	≤ 0.1	≥ 10 ⁴	1	≥ 10 ³	≥1	Galaxy	≤1	≤ 100

$$t_{dyn} = \left(\frac{GM}{r_{vir}^3}\right)^{-1/2} t_{rh} = 0.138 \frac{N^{1/2} r_h^{3/2}}{\langle m \rangle^{1/2} G^{1/2} \ln \Lambda} \qquad \Lambda \sim 0.11N \text{ for equal mass system} \\ \Lambda \text{ smaller for large mass range}$$
(Spitzer, 1987)

Galaxies: collisionless system;

Star cluster: collisional system

Star cluster dynamics

Star cluster

Galaxy formation

Star formation

Observations (Simon F. 2010)

-	Cluster	Age	М	R _{vir}	ρ _c	Z	Location	t _{dyn}	t _{rh}
	Unit	Gyr	M₀	рс	M _☉ /pc ³	Z⊙		Myr	Myr
	OC	≤ 0.3	≤ 10 ³	1	≤ 10 ³	~ 1	disk	~1	≤ 100
	GC	≥ 10	≥ 10 ⁵	10	≥ 10 ³	< 1	halo	≥1	≥1000
	YMC	≤ 0.1	≥ 10 ⁴	1	≥ 10 ³	≥1	Galaxy	≤1	≤ 100

Massive star/ Compact objects

Distance measurement Numerical simulation need to consider encounter and primordial binary effects

Encounters & Binaries

Binney & Tremaine 2008

- Relaxation: loss memory
- Equipartition: mass segregation
- **Escape:** disruption of clusters
- Inelastic encounters: massive stars (Blue stragglers) formation
- Triple encounters: binary formation
- Interactions with primordial binaries: high binding energy of binaries transform to energy of cluster

Numerical methods

	Fluid Dynamics	Monte Carlo/Fokker-Planck	Direct N-body
Advant ages	Easy to use methods from fluid dynamics	 Very Fast Include encounter effects 	 Very accurate No assumption of dynamical process All dynamical information
Disadva ntages	Ignore the free path difference	 Assume spherical symmetry Assume velocity distribution for perturbations Cannot resolve individual objects 	and the second s

N-body Method

Direct N-body Method								
Open Clusters/ GCs	GCs/Galactic nuclei	Open Clusters	Galactic nuclei					
Nbody6/7	v6/7 Nbody6++ Starlab		φGPU					

Parallel Inside node	GPU parallel	Parallel between nodes	Neighbor scheme	Kustaanheimo– Stiefel Method (KS)	Chain
OpenMP AVX/SSE2	Fast force calculation	MPI	Less force calculation	Accurate close encounter/ binary calculation	Accurate dense multi-body calculation

Speed challenge

- Time requirement for Long-term 1M particle simulation
 - → Typical scale factor (G=M=1, E=-0.25)
 - ↗ Plummer model, R_{vir}=1pc
 - ✓ Salpeter IMF a=2.3, M_{max} =10 M_{\odot} , M_{max} =0.1 M_{\odot}
 - ↗ 1Myr ~ 50 N-body time unit
 - **7** 10Gyr simulation within one Month:

Recent Improvements for MPI+GPU

Benchmark of NBODY6++

Time fraction

Strong mass loss by tidal field

 $N = 10^{6}$ M = 574000.0M_☉ R_{vir} = 30.67pc Solar neighbor tidal field

Summary

- Direct N-body simulations are important for accurately understanding the dynamical evolution of star clusters.
- The speed of direct N-body simulation is still a big challenge for long-term evolution of massive star clusters.
- Nbody6++ speed up a lot recently
- **KS** parallelization will be done in the future