Tidal Disruption: A Probe for Understanding the Evolution of Supermassive Black Hole Binary

Shuo Li NAOC/PKU

Evolution of Supermassive Black Hole Binaries

Tidal Disruption

BH's tidal gravity conquer star's self gravity:

Tidal radius:

 $r_{\rm t} \simeq \mu r_* (M_{\rm BH}/m_*)^{1/3}$

 $r_{\rm t}$

Linda Strubbe

Tidal Disruption

Tidal Flare

Mass distribution during tidal disruption (TD):

Evans et.al., APJ 1989, 346 L13

Tidal Disruption

Flare in Observation

Peak in X-ray(~10⁴⁴ erg/s), flatter in UV and optical;
Some of them have relativistic jets: J1644+57, J2058+05...
More complicated than theoretical predictions;

Implications

- A probe of galactic core; A probe of jet formation;
- A probe of stellar dynamics in galactic nuclei;
- A tool for testing predictions of GR;
- Understand the growth of SMBHs;
 - Search for recoiling SMBHs and SMBHBs

Model for galaxy merger:

Stellar distribution:

 $\rho(r) = \frac{3-\gamma}{4\pi} \frac{Ma}{r^{\gamma}(r+a)^{4-\gamma}}$

 $M_1 = M_2 = 10^3, M_{tot} = 2;$ $\gamma = 0.5, 1.0, 1.5;$ N = 50kx2, 100kx2, 250kx2, 500kx2; $r_{bh0} = 20, r_{p0} = 1, in parabolic orbit;$ $r_t = 5x10^5, 10^4, 5x10^4;$ Large particle number direct Nbody simulation (phi-GRAPE/GPU) with simplified TD scheme;

Preliminary results for tidal disruption in merging galaxies:

Boosted rate around the bound system formation;

Distance

The last apocenter distribution of disrupted stars:

TD in SMBHB Systems

Tidal Disruption of Recoiling SMBH

Boosted TD events around density center in phase I: *Higher stellar density;*

Tidal Disruption of Recoiling SMBH

- Boosted TD events around density center in phase I: *Higher stellar density;*
- Monotonic increasing TD rates for recoiling SMBH in phase I:

 $\sim 10^{-6} \mathrm{M}_{\odot} \mathrm{yr}^{-1}$

Constant TD rates for stationary SMBH and recoiling BH in phase II:

$$\sim 10^{-5} \mathrm{M}_{\odot} \mathrm{yr}^{-1}$$

- The SMBHBs in normal galaxies are hard to detect;
- TD can be a very powerful tool to study SMBHBs in quiescent galaxies;
 - Boosted TD rates in merging galaxies;
 - The truncation of TD light curve can be used to distinguish SMBHB;
 - Boosted TD rates for recoiling SMBHB passing by galactic center;
- Large scale survey like LSST is very important;
 - Long term follow up observation is very important.