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Motivation Theory Implementation Summary

Motivation

Two fast & approximate approaches

The Monte Carlo method concerns itself with old, spherically
symmetric clusters in dynamical equilibrium where evolution is
dominated by relaxation. Very good for galactic star clusters

Expansion methods can deal with non-equilibrium systems of
any geometry, but assume a very long relaxation time.

Very good for galactic centers

Could the two interface (possibly via Amuse)?

Maxwell Tsai’s talk

Expansion methods 1
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Motivation Theory Implementation Summary

Motivation
More on galaxy centers

Binary supermassive black holes (BBHs)
in a galactic center environment. . .

A tiny fraction of stars affects the BBH
significantly via secular processes.
very large N is needed to resolve this!

The interesting physics is in the BBH–star
interaction.

The force due to other stars is mostly radial*.

Relaxation time is very long.

NGC 1128

Expansion methods 2
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Motivation Theory Implementation Summary

Why is the N-body problem a problem?

Because those are 3N coupled non-linear second order
differential equations, where N ≈ 1011 in a galaxy.

r̈i = −G
∑
i,j

mj(ri − rj)

|ri − rj|3

N is smaller by orders of magnitude.

2-body relaxation time ∝ N/ ln N

DF not properly populated

Expansion methods 3
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Motivation Theory Implementation Summary

Rough analogy: digital images

600×800.tiff file
1400 kb

“full” N-body

∆ = 100% means white
noise difference image;
zero means identical.

Expansion methods are like JPEG, lossy but flexible.
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Rough analogy: digital images

600×800.tiff file
1400 kb

“full” N-body

60×80.tiff file
14 kb

smaller N

∆ ≈ 36%
∆ = 100% means white
noise difference image;
zero means identical.
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Motivation Theory Implementation Summary

Theory

The Poisson equation is ∇2Φ(r) = 4πρ(r).
The formal solution:

Φ(r) = −
∫

1
|r − r′| ρ(r′) d3r′

Taylor series

generalized Fourier series

Φ(r) =
∑

k

akΦk(r)

In MEX you know the coefficients and numerically evaluate the
functions; in SCF you pick a function basis in advance and need
to calculate the coefficients from the density.

Expansion methods 5
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Theory
MEX has two sums while SCF has three. Thus:

MEX = lim
n→∞ SCF

However MEX requires the particles to be sorted. /

MEX is ‘accurate’ in the radial direction.

Decompose the mass density ρ(r) = ρ̄(r) + ρ̃(r, θ, φ)
to a spherical average and the non-spherical deviation.

Φ(r) = Φ0(r) +

∞∑
l=1

Φl(r, θ, φ)

In SCF need to choose the basis set wisely. /

Expansion methods 6
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Motivation Theory Implementation Summary

Implementation

Everything but i/o is done on the GPU!

“Thrust is a parallel algorithms library
which resembles the C++ Standard
Template Library (STL)”

Built-in subroutines (sort, prefix sum, reduce, transform. . . )

Transparent GPU programming in C++ (no CUDA calls)

Change to OpenMP with a compilation flag.
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Motivation Theory Implementation Summary

How many multipoles?
−F

r

N-body

F θ

0

2

4

6

×10−1

Rotating King model with N = 106, W0 = 6 and ω0 = 1.8 (fast rotation)
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First test (monopole only)
Spherical collapse

1 10 100
t

0.1

1

2
r

20%
50%
70% NBODY6++

Uniform density sphere (N = 6 × 104), virial factor Q = 0.1
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First test (monopole only)
Spherical collapse
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New code

Uniform density sphere (N = 6 × 104), virial factor Q = 0.1
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More interesting test
Radially anisotropic spherical collapse
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Special DF (Polyachenko et al. 2013) with N = 106
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Summary
Status report

We have very good MEX & SCF potential solvers for GPUs.

The following extensions are pending:

Collisional particles

Good time stepping

MPI parallelization

Amusemodule?
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